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1. INTRODUCTION. In his Almagest, Ptolemy inscribes triangles in a unit circle, a
circle with diameter d = 1 (see [5], pp. 90–92). This way the length of each side (now
chord) represents the value of the trigonometric function sine of the opposite angle. A
similar geometric interpretation of the cosine function is possible.

In Figure 1 we present Ptolemy’s famous sketch, juxtaposed with a “dual” sketch
that shows the values of the cosines as segments of the altitudes (see Proposition 1).
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Figure 1. Ptolemy’s design and its dual.

This observation—which seems to be absent in all the presentations of trigonometry
known to us—proves to be a convenient tool for bringing order into the garden of
trigonometric identities. As an example, see Figure 2 for ways to visualize products of
sines and of cosines; they would perhaps please Napier in his experiments with such
products that eventually led him to the concept of logarithm.
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Figure 2. Products of trigonometric functions.

In the following we present some new proofs and visualizations. Along the way, we
also prove some standard facts to make the “sine-cosine” duality transparent, and to
maintain completeness, with the aim of providing a guide for a geometric path through
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trigonometry. Among new items are visualizations shown on the right in Figures 1, 2,
14, and 15. Also, a simple proof of the Nine-Point Circle Theorem stands among the
benefits we present.

Throughout these notes we use the term unit circle for one with unit diameter,
d = 2r = 1. We deal with acute triangles only; the case of right and obtuse triangles
is handled in Section 6. It is reduced there to the former one by construction of the
unit orthotetrad, the set of three vertices and the orthocenter.

2. A GOOD LOOK AT THE ALTITUDES. We use the standard notation for a
triangle: letters A, B, and C denote the vertices, α, β, and γ the corresponding angles.
As all the results remain valid under permutation of vertices, we state properties and
conduct reasoning for a particular choice of the elements.

The altitude (see Figure 3) from vertex C is denoted by hC ; its foot (the point lying
on the side AB) by CF . The point on the other end of the chord containing hC is
denoted by C .

The orthocenter H (its existence remains yet to be proven) divides each altitude
into two segments: its ear C H extends from the orthocenter to the vertex and its stem
HCF goes from its foot to the orthocenter. The segment CF C that goes beyond the
triangle and reaches the circle is called a root. Recall that the midpoint of the ear is
known as an Euler point.
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Figure 3. The anatomy of an altitude.

Let us begin with proofs of the facts illustrated in Figure 1.

Proposition 1. Let a triangle ABC be inscribed in a unit-diameter circle.

(i) [Ptolemy’s theorem] The triangle sides represent sines: |AB| = sin γ .
(ii) [It’s dual] The ears represent cosines: |C H | = cos γ .

(iii) [Existence of orthocenter] The three altitudes concur in one point H.

Proof. Both angles γ = ∠AC B and ∠AC1 B in the left-hand side of Figure 4 are
based on the same chord AB, so they are equal. The point C1 is chosen so that AC1

forms a diameter and ∠ABC1 is a right angle. The definition of sine implies (i).
To prove (ii), consider altitude hB = B BF . As �AC1C is a right triangle, both

CC1 and B BF are perpendicular to AC , and therefore mutually parallel. Thus forming
parallelogram BC1C H we get |C H | = |C1 B| = cos γ (see Figure 4).
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To prove (iii), repeat the process of (ii) using A instead of B to see that H is the
point where hC and h A meet.
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Figure 4. For sin γ , follow Ptolemy. For cos γ , shift it to vertex C .

Scaling the figure by the factor d ∈ R+ yields these basic trigonometric facts:

Corollary 2. If �ABC is inscribed in a circle of diameter d, then

(i) [The Law of Sines]
|AB|
sin γ

= |BC|
sin α

= |AC|
sin β

= d.

(ii) [The New Law of Cosines]
|AH|
cos α

= |BH|
cos β

= |CH|
cos γ

= d.

Proof. Inscribe �ABC in a circle of some diameter d and dilate with respect to its
center to a unit circle to get a “Ptolomean” triangle. The corollary may be viewed as a
reformulation of Thales’ theorem.

The altitudes cut a triangle into six triangles. The resulting angles are shown in
Figure 5, where ϕ∗ denotes the angle complementary to ϕ (ϕ∗ = π

2 − ϕ).
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Figure 5. Angles. Figure 6. Four unit circles.

Proposition 3. A circle through any three of the four points A, B, C, H has the same
diameter (Figure 6).
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Proof. Use the Law of Sines to find the diameter dAH B of the circle circumscribed on
�AB H . The angle opposite AB is α + β = π − γ , so the diameter is

dAH B = |AB|
sin(π − γ )

= sin γ

sin γ
= 1.

Proposition 4. The stem and root of each altitude are of equal length.

Proof. Both angles ∠ABC and ∠ACC are based on the same chord AC, thus ∠ACC =
∠ABC = β. On the other hand ∠AHC = β (see Figure 5). An analogous argument
gives ∠HC B = ∠BHC = α. So, �AC B and �AHB are congruent.

Corollary 5. The reflections of the orthocenter H through the sides of �ABC lie on
the excircle of the triangle.

This picture complements Proposition 3 on the four unit excircles. Each of the four
points is the orthocenter of the triangle formed by the other three. It should also be
obvious that, by Proposition 3, any pair of these circles form mutual mirror reflections
through their common chord.
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Figure 7. The stem and the root are equal.

Remark. Frère Gabriel-Marie gives the name of orthocentric group to such con-
figurations, attributing the nomenclature to an article by de Longchamps from 1891
(see [2], p. 1076) and their study to Carnot (see [2], p. 142). For related material, see
Chapter 2 of [3].

Let us now formulate the results displayed in Figure 2.

Proposition 6. In a triangle ABC inscribed in a unit circle:

(i) The length of an altitude is the product of the sines of the angles opposite the
altitude: |hC | = sin α · sin β.

(ii) The length of a stem is the product of the cosines of the angles opposite the
altitude that contain the stem: |HCF | = cos α · cos β.

Proof. (i)
|hC |
sin β

= sin α. (ii)
|HCF |
cos β

= cos α.
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Figure 8. Proof of Corollary 7: Use definitions of sine and cosine.

As a bonus we get from Figure 8 geometric representations of mixed products of
sines and cosines:

Corollary 7. In a triangle ABC inscribed in a unit circle, the foot of an altitude hC

divides the side AB into segments of lengths:

|ACF | = cos α sin β and |BCF | = cos β sin α.

Proof. If suffices to check Figure 8 for
|ACF |
sin β

= cos α and for
|BCF |
cos β

= sin α.

3. REPLICAS. The orthic triangle AF BF CF is spanned by the feet of the altitudes.
Interestingly, by removing it from �ABC we get three smaller copies of the original
triangle (see Figures 9 and 10). To see this, we determine the angles of the triangles as
in Figure 9 right.

There is a useful—although somewhat neglected—notion, present in older geome-
try textbooks. If a line cuts BC in N and AC in M forming ∠NMC = α, it is parallel
to AB. If ∠NMC = β, the line is called antiparallel to AB (see [1], p. 169).
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Figure 9. Orthic �AF BF CF is built from antiparallels.

Proposition 8. Let �AF BFCF be the orthic triangle of �ABC. Then:

(i) The sides of the orthic triangle are antiparallel to the sides of �ABC.
(ii) The angle of that triangle at the vertex BF is π − 2β.

(iii) The altitudes of �ABC are bisectors of the angles of �AF BF CF .

Proof. (i) The quadrilateral AFC BF H (see Figure 10, on the left) has two right angles
at the opposite vertices AF and BF —so, it is cyclic. Now, ∠AF HC = ∠AF BF C as
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these angles are subtended by the same chord AFC in the circumscribed circle. The
first of them (see Figure 5) is β. Therefore the segment AF BF lies on a line antiparallel
to AB.

(ii) Similar reasoning applied to the quadrilateral BF ACF H leads to the conclusion
that ∠CF BF A = β, so ∠AF BFCF = π − 2β.

(iii) Since ∠AF BFC = ∠CF BF A and HBF is perpendicular to AC, line HBF bi-
sects ∠AF BF CF .

H
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γ β

γ
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BF

AF

dC  = cos γ

dA  = cos α dB  = cos β

dABC  = 1 

Figure 10. New circumcircles.

Thus, by removing �AF BFCF from �ABC one gets three copies of the original
triangle, with circumcircles that have diameters dA = cos α, dB = cos β, and dC =
cos γ . Automatically, we obtain geometric interpretations of multiple products of at
most two sines and arbitrarily many factors of cosines, as segments in a fractal-style
nested family of ever smaller copies of �ABC.

Notice that the centers of the three circles are at the midpoints of the ears of the
altitudes of �ABC.

Our sketch (Figure 11) also contains differences of angles:

Proposition 9. Let C D be a diameter of the circle circumscribing �ABC.

(i) The diameter CD is orthogonal to AF BF .

(ii) If β > α then ∠CCD = β − α.

Proof. (i) By Proposition 8 we have ∠BF AFC = α. On the other hand, ∠BDC and
∠BAC are subtended by the same chord BC, so ∠BDC = α. As CD is a diameter,
�BCD is a right triangle and ∠BCD = α∗, so that ∠AFC1C = π/2.

(ii) In right triangles BFC1C and BCFC there are angles equal to β at BF and
at B, respectively (see Figure 11). Thus, ∠BFCC1 = ∠BCCF = β∗. Now, ∠CCD =
γ − 2β∗ = (π − (α + β)) − 2(π/2 − β) = β − α.

Corollary 10. The length of the chord from a vertex along the altitude has length
CC = cos(α − β).

4. DILATION. Two cases of dilation by factors of 2, centered at H , are examined
here.
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Proposition 11. Let �ABC be inscribed in a unit circle centered at O. Consider the
dilation δ with ratio 2:1 centered at H.

(i) δ carries the orthic triangle �AF BF CF onto the circum-orthic triangle, whose
vertices are A, B, and C.

(ii) δ−1 carries the unit circle into the circle circumscribing the orthic triangle. Its
radius is 1/2 and its center is at the midpoint N of the segment O H.

Proof. (i) By Proposition 4, |H AF | = |AF A| (see Figure 7), and similarly for the other
two altitudes, hence (i) follows. (ii) �A B C is inscribed in the circle of diameter 1 and
center O , so the inverse dilation carries O to N and the circumcircle of �A B C to the
circumcircle of �AF BF CF with radius 1/2 (see Figure 12).
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Figure 11. Angle differences.

AF

A B

C

BF

CF

C

H A

B

O
N

Figure 12. Orthic and circum-orthic triangle.
Unit circle and 9-point circle.

Among the circles associated with a triangle one is exceptionally famous: the cir-
cumcircle of the orthic triangle. It is called the nine-point circle, as it also contains
the midpoints of the sides and the Euler points. Three different proofs of this prop-
erty, appearing in the first pages of Chapter I of [6], stress the elementary nature of
the proposition. It also surfaces here as a natural consequence of our trigonometric
considerations.

Proposition 12 (Nine-Point Circle Theorem). The circle centered at N with radius
1/2 contains all midpoints of sides of �ABC, feet of its altitudes, and midpoints of
ears of the altitudes.

Proof. Assume that α �= β. Reduce the triangle CC D by a factor of 2 by contraction
δ−1 centered at H (see Figure 13). The vertices are mapped as follows: C → CF and
C → MC H (midpoint of the ear). The third vertex, D, maps to the midpoint MAB of
AB. To see this, notice that a translation of CO, half the diameter, along the altitude
carries it to the hypotenuse of the smaller triangle. Since MAB is the perpendicular pro-
jection of O onto AB, it halves the chord. The midpoint of MC H MAB is the intersection
point of the diagonals of the parallelogram H MAB O MC H . It is also the center of the
circumcircle of �CF MAB MC H . Neither its radius 1/2 nor its center N depend on the
choice of the altitude, so the claim holds.
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Figure 13. Nine-point circle.

5. IDENTITIES. Putting together the sides and altitudes of �ABC yields trigono-
metric identities for compound angles:

1. sin(α + β) = sin α cos β + sin β cos α

2. cos(α + β) = cos α cos β − sin α sin β

3. cos(α − β) = sin α sin β + cos α cos β

4. 2 cos α cos β = cos(α − β) + cos(α + β)

5. tan α + tan β = sin(α + β)

cos α cos β

6. cot α + cot β = sin(α + β)

sin α sin β

Proof. For γ = π − (α + β) we have sin γ = sin(α + β) and cos γ = − cos(α + β),
so a look at Figure 14 makes it clear that (1) and (2) hold. Identities (3) and (4) are
illustrated in Figure 15. (The lengths of respective segments are given by Proposition 6
and Corollary 7, while cos(α − β) may be read off from Figure 11.)

C

A B

C

A B

cos α sin β sin α cos β

sin (α+β)

–cos (α+β)

cos α cos β

sin α sin β

cos(α+β) = cos α cos β – sin α sin β

Figure 14. Two identities visualized in the unit circle.

For (5), use the first part of Proposition 6 and Figure 5, and to get (6) use the second
part of Proposition 6:
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Figure 15. More indentities.

5. tan β + tan α = |ACF |
|CF H | + |CF B|

|CF H | = |AB|
|CF H | = sin(α + β)

cos α cos β
.

6. cot α + cot β = |ACF |
|CFC | + |CF B|

|CFC | = |AB|
|CFC | = sin(α + β)

sin α sin β
.

6. CODA. The three vertices of a triangle and its orthocenter form a quartet of points
that catches the essence of triangle geometry: each of these four points is the ortho-
center of the triangle formed by the other three. This fact will allow us to unify some
of our results, as well as to answer the last pending question.

A unit orthotetrad (see [7]) is a system of four planar points, P, Q, R, S, such
that any three of them form a triangle with unit excircle and any coupling of points
into pairs creates two orthogonal segments (see Figure 6). We shall use the following
general notation: �P := �QRS for triangles and ∠QP := ∠RQS for angles. More-
over, [P Q, RS] stands for a segment the meaning of which depends on the context: it
is the altitude in �P from vertex Q towards side RS, which is equivalent to the stem
in �Q from P , and which is also the “pedal segment” QSF of side PQ in �R.

A look at Figure 5 reveals that either ∠PQ = ∠QP or ∠PQ = π − ∠QP. All char-
acteristic elements (15 angles, 6 sides/ears, and 12 altitudes/stems/pedal segments)
follow these two rules:

1. sides or ears: |RS| = sin ∠PQ = sin ∠QP.
2. other segments: [P Q, RS] = (sin ∠PQ) · (sin ∠RS).

Recall that the results of this paper were all derived for acute triangles. They are
naturally transfered to any obtuse triangle when one embeds it into the associated
orthotetrad. Note also that any two mutually orthogonal segments in the orthotetrad
correspond to the sine and cosine of an angle.

Various other geometric facts easily follow as corollaries from the path advocated
in this paper. Below, we present several of them and invite the reader to extend the list.
Hints for their proofs may be found at [4].

Additional geometrical facts.

1. The area of a triangle is (ABC) = 1
2 sin α sin β sin γ .

2. 4 sin α sin β sin γ < π .
3. The power of H in the circumcircle of �ABC (product of any two parts of a

chord passing through the point) is 2 cos α cos β cos γ .
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4. The distance of the antipodal point of C from AB is equal to the root hC .
5. The circle inscribed in the orthic triangle has radius cos α cos β cos γ and center

H .
6. The orthocenters of �ACF BF , �B AFCF , and �C BF AF lie on the sides of the

circum-orthic triangle.
7. The distance u = |OH| satisfies u2 = 1/4 − 2 cos α cos β cos γ .
8. For α + β + γ = π one has cos2 α + cos2 β + cos2 γ + 2 cos α cos β cos γ =

1.
9. The heights of a triangle obey the inequality

1

|h A| + 1

|hB | >
1

|hC | .

10. The inradius r of �ABC satisfies

1

r
= 1

|h A| + 1

|hB | + 1

|hC | .

11. The centers of the circumcircles of �ABH, �BCH, and �CAH form a triangle
OAB OBC OC A congruent to the triangle ABC and they are interchanged by a
half-turn around N .

Another interesting exercise is to rewrite the whole story in terms of complex num-
bers.
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